

LA-UR-21-23850

Approved for public release; distribution is unlimited.

Title: Development in Neutron Scattering at WNR using Dual n-gamma Detection

Author(s): Kelly, Keegan John

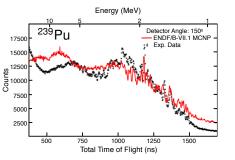
Intended for: Presentation for P-Division Physics Cafe series

Issued: 2021-04-20

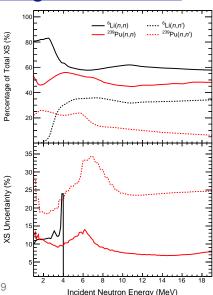
Welcome to Physics Café

Keegan Kelly, P-3:

"Developments in Neutron Scattering at WNR using Dual *n*-γ Detection"

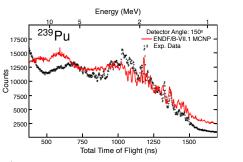

April 22nd, 2021

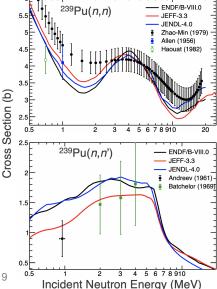
Outline


- Neutron scattering data analysis development with liquid scintillators at WNR
 - correlated $n-\gamma$ measurements from neutron scattering
- Ideal detector search, challenges, and array development
- Potential for correlated cross section measurements

Scattering is the Most Probable *n* Reaction, but Cross Sections have Large Uncertainties

- Scattering is usually the most likely neutron interaction
- Uncertainties are prohibitive for simulation accuracy
- Scattering cross sections are the evaluation "trash bin"[†]

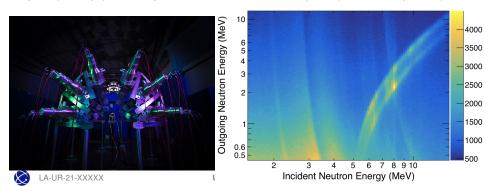



[†]D. Brown, The Nuclear Data Pipeline, WANDA2019

Scattering is the Most Probable *n* Reaction, but Cross Sections have Large Uncertainties

- Scattering is usually the most likely neutron interaction
- Uncertainties are prohibitive for simulation accuracy
- Scattering cross sections are the evaluation "trash bin"[†]

[†]D. Brown, The Nuclear Data Pipeline, WANDA2019

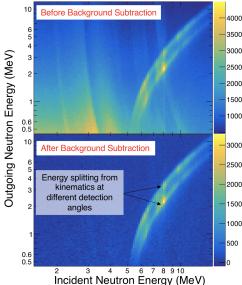


_A-UR-21-XXXXX

Liquid Scintillators Used for Initial Studies

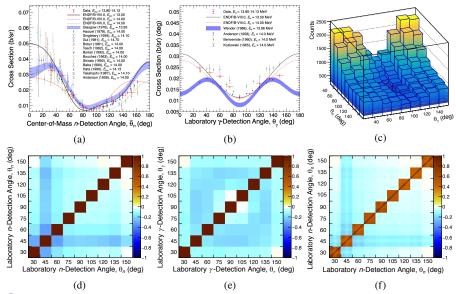
- Able to leverage data collected from other experiments using the Chi-Nu liquid scintillator array
 - High statistics, to better guide data analysis
 - Difficult to obtain high statistics with trial detector purchases
- Start with easy case: natural carbon

Begin by simply looking for $n-\gamma$ coincidence in post-processing analysis

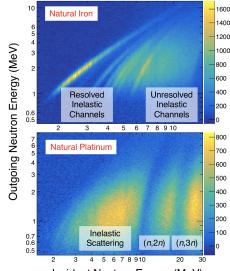

Random Coincidence Backgrounds Eliminated

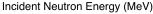
- Random coincidence rates derived form Poisson probabilities for uncorrelated detection rates †
 - true coincidence rate must be low
- Calculate the total probability for:
 - 1. Detecting a γ at time t_{γ}
 - 2. Not detecting *n* over coinc. time $t_n t_{\gamma}$
 - 3. Detecting n at time t_n

Coinc. Rate
$$= r_b = r_\gamma r_n \Delta_t$$


$$\Rightarrow b = \frac{\gamma n}{N_{t_0}}$$
with $\gamma, n = \text{counts}$

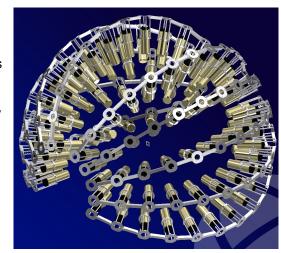
Works remarkably well here


[†]O'Donnell, NIMA **805** (2016) 87


Extract n, γ , and Correlated n- γ Distributions

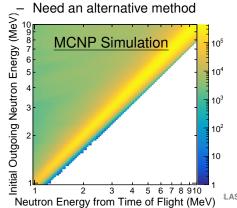
Sensitive to All n-y Producing Reactions

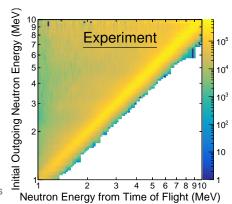
- Fe levels are reasonably dense
- The liquid scint. time resolution allows for ⁵⁶Fe low-lying state separation
- Natural Pt shows inelastic scattering, (n,2n), and (n,3n) reactions, with separation
- Elastic scattering data also exist from these measurements
 - Potential for correlated measurements of these different cross sections

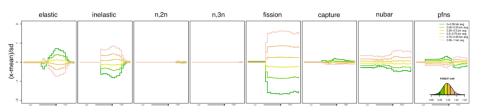

Search for the Ideal n- γ Detector

	Time Res.	γ Energy Res.	PSD	Pulse Length	<i>n</i> Energy Range	γ Energy Range	Det. Efficiency
HPGe	5-10 ns	<1%	N/A	>100 μs	N/A	Det. Dep.	Only γ
Liq. Scint.	1 ns	Bad	Limited	10-20 ns	>0.7 MeV <12 MeV	Poorly Defined	Both Obs. $n > \gamma$
CLLBC	1.5 ns	4%	Near Perfect	4 μs	Thermal – 10 MeV	>0.2 MeV <7 MeV	Both Obs. $\gamma >> n$
CLYC-7	1.5 ns	4.5%	Near Perfect	4 μs	>1 MeV <10 MeV	>0.2 MeV <7 MeV	Both Obs. $\gamma > n$
CLYC-6	1.5 ns	4.5%	Near Perfect	4 μs	Thermal – 10 MeV	>0.2 MeV <7 MeV	Both Obs. $\gamma > n$

- CLYC-6 possess all necessary characteristics, with some drawbacks
 - Semi-long waveforms: 1.5" detectors to reduce count rates
 - PSD-overlap of 6 Li(n,t) and 35 Cl(n,p): Increased target-detector distance
 - Need large number of detectors to have sufficient efficiency

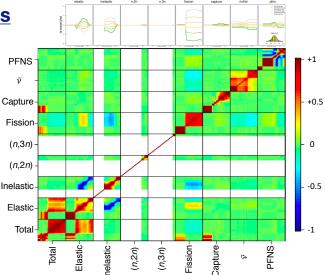

Array Structure Development is in Progress


- CAD design work in prog.
 - Eames Bennett, P-3
 - Series of candidate designs exist
- Transferring candidate array designs to MCNP for optimization studies
 - e.g., reduce impact on measurement from environmental scattering, while maximizing efficiency


Response Matrix Technique Regired for n-Det.

- Typical treatments of detection efficiency work poorly for neutrons
- Need complete description of n interactions with exp. environment
 - Especially for smooth distributions (e.g., high level density scattering)
- This was handled with MCNP for Chi-Nu PFNS measurements
 - The $^{35}CI(n,p)$ cross section is poorly known...

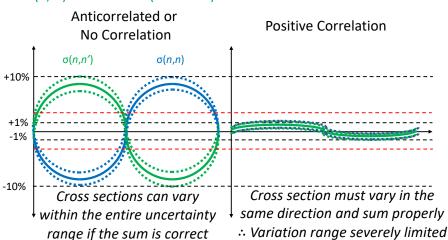
Correlations Between Cross Sections



- See Sigeti et al. LA-UR-18-22053 and LA-CP-18-00796
- Also discussed at S. Mosby colloquium on 4/15 and WRIG on 4/6
- Correlations between ²³⁹Pu cross sections from fitting to Jezebel critical assembly
 - Shows a, "...quantitative picture of compensating errors."
 - Strong prior correlations assumed between elastic and inelastic, to match total XS
 - 2D correlation matrices are more informative

XS Correlations

- Jezebel fitting enhanced el./inel. anticorrelation, but the correlations were already there!
- Anticorrelation came from evaluation requirement to sum to the total
- No experimental correlation input
- Exp. correlations are largely positive...



What if experimental elastic/inelastic correlations were reported?

Correlated XSs Can Make a Big Impact!

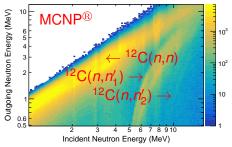
Consider a nucleus with only elastic and inelastic scattering XS's

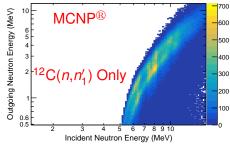
$$\sigma(n,n) = 1.0 \pm 0.1 \text{ b } (10\% \text{ unc.})$$
 $\sigma(n,n') = 1.0 \pm 0.1 \text{ b } (10\% \text{ unc.})$ $\sigma(n,n') = 1.0 \pm 0.1 \text{ b } (10\% \text{ unc.})$

Conclusions

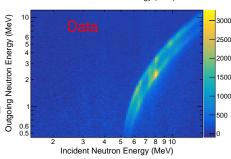
- Promising capabilities with Chi-Nu liquid scintillator array
 - Limitations pointed towards another more ideal detector
- CLYC-6 detector array design in progress
 - CAD modeling \rightarrow MCNP \rightarrow Optimization
- Refinement of experimental techniques is required to properly use these detectors
 - Experimental detector response matrix
- Potential for correlated elastic and inelastic scattering cross section measurements
 - Also measure (n,2n)? (n,3n)? Total XS?
- Initial work funded by LDRD Project 20190588ECR
- Experimental measurement and development campaign underway through LDRD Project 20210329ER

Thanks to Matt Devlin, John O'Donnell, Eames Bennett, Morgan White, the LANSCE accelerator staff, RMD inc., and you!



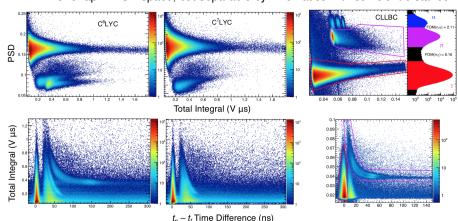

A-UR-21-XXXXX

Backup Slides

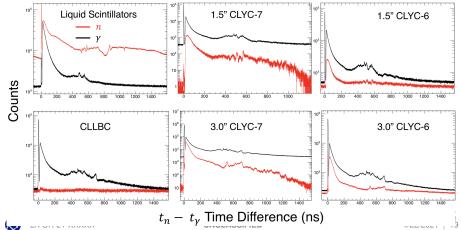


MCNP Separates Rxns ⇒ Corrections per Rxn

- MCNP® simulation of $^{12}C+n$ initially yields all reactions
- MCNP® + PTRAC allows for each reaction to be separated
- Can be used for in-target scattering and other corrections individually for each reaction



A-UR-21-XXXXX


Kinematic and PSD Elpasolite Capabilities

- Beam-off ²⁵²Cf measurements at two target-detector distances
- 1 m distance kinematics and PSD shown here
 - Near perfect PSD separation
 - n detection via 6 Li(n,t) and 35 Cl(n,p) reactions
 - Overlap in PSD space, but separable by kinematics with sufficient distance

Higher γ Response Ideal for γ -Coincident n's

- Data from carbon can be compared to determine relative $n-\gamma$ response
- Higher efficiency for γ than n in elpasolites (opposite of liquids)
 - Reduces chance of missing a γ for an inelastically scattered neutron
- CLLBC has very little neutron response

